Securiti launches Gencore AI, a holistic solution to build Safe Enterprise AI with proprietary data - easily

View

How Sensitive Data Discovery Helps Secure PII (Personally Identifiable Information)

Published October 25, 2021
Author

Omer Imran Malik

Senior Data Privacy Consultant at Securiti

FIP, CIPT, CIPM, CIPP/US

Listen to the content

Personally identifiable information (PII) is defined by the US Department of Homeland Security as information that can uniquely identify an individual, such as an employee, patient, customer, or donor. In addition to PII, “Sensitive PII” is data that, if compromised, could result in greater risk to the individual, this may include an individual’s government defined number (such as US Social Security Number) number, financial information, sex, sexuality etc.

There are now hundreds of laws and regulations covering the collection, use, sharing, deletion and security controls for PII and sensitive PII and new ones are being enacted every month (for example The Kingdom of Saudi Arabia’s new laws comes into force in March 2022). Consumers are better informed than ever about the value of their data, the problems if it is misused or lost and regulators are investigating companies who have built their business on data collection, so organizations need to be sure that they are using data legally within this maze of regulations.

Whether it is for data protection, governance, or regulatory compliance, everything starts with knowing what type of data classifies as sensitive, where it resides, what its security posture is, and what judicial laws apply to it. There is where the need for an effective PII data discovery tool arises.

Importance of PII Data Discovery in a Dynamic Environment

Arm Treasure Data reports that 47% of marketers agree to the fact that data is siloed, and thus, difficult to access. Take, for instance, in a marketing campaign, the sales team uses a lead’s data to turn them into paying customers, and the finance team uses the same data to process one-time or recurring payments. Then, the same data is used by the product marketing team to send retention emails to the customers.

In the previous example, every department is processing the data differently, potentially needing access to different PII. The finance team needs access to the credit card data to process the payment, while the email marketing team uses customers’ names and email addresses to send them emails. Together with the customer’s country (to set the correct pricing) and language to make sure the emails are read, sales needs to know their full address and customer success need full product version details. However, none of these teams need to know everything. For this reason (and others), the same data may be replicated throughout the organization in different siloed databases making control, updates and therefore data accuracy a very difficult task.

Apart from data silos, the advent of hyper-scale cloud computing environments like Snowflake has given rise to seamless collaboration in the cloud. Most organization’s employees are free to access the cloud, run petabyte-scale queries from different locations, and thus, produce more data in the process. To put this in perspective, it is forecasted that the cloud environment will have more than 100 zettabytes of data by 2025.

This cloud data is then scattered across multiple data lakes, databases, apps, and even personal computers. This creates a lack of visibility into the security posture of the data or its compliance status, putting it at serious risk of security breaches or compliance failure.

Data governance, security, and compliance require seamless visibility and insights into PII. A sensitive data discovery tool delivers just that, aiding CISOs and DPOs in having complete visibility into the data, and its security and compliance status.

Best PII Data Discovery Practices

An organization’s data discovery process should consider the following data discovery best practices to identify, classify, and analyze PII.

  • Discover shadow assets and native assets: Data discovery starts with identifying where the data resides. The data may reside in the shadow as well as native data assets. Native data assets may include data warehouses, data lakes, or databases across on-premise or multi-cloud environments. Shadow data assets can be unregistered systems that were added to the cloud but not documented in the CMDB.
  • Catalog data assets metadata: Next step is to detect and catalog the metadata across shadow and native assets. The metadata may further be classified into business, technical, and security metadata, such as vendor information, port information, version, encryption status, etc.
  • Classify unstructured and structured data: Detect unstructured and structured sensitive data that resides in scattered doc types and across different tables and rows in a data store, respectively. Appropriate classification later allows teams to effectively map the data to its owners and assess its security and privacy posture.
  • Use policy-based labeling: Policy-based labeling classifies data into different categories, purposes, or content profiles, such as Business, Financial, Academic, etc.
  • Define security-based labeling: In security-based labeling, sensitivity classification is applied to data, such as emails, documents, etc. The data is then protected according to the sensitivity level of the data which is categorized into, Confidential, General, Public, and Secret.
  • Apply privacy-based labeling: In this type of classification, the data is tagged based on the privacy risks it carries. This data gives insights into the privacy concerns related to any data, such as whether it needs to comply with Article 30 under GDPR. Is it needed for any data subject request (DSR) fulfillment?

Traits of an Effective PII Data Discovery Solution

In a petabyte-scale environment, it is not humanly possible to dig through millions of bytes of disparate data, classify it, or analyze it. There’s a need for a smart data discovery tool that can take petabytes of raw data, classify it, refine it, and help security and privacy teams ensure better security, governance, and compliance.

An effective PII data discovery tool ought to have the following important characteristics that can help organizations gain better visibility and control.

  • It should be AI-driven for better speed and efficiency.
  • It should have native connectors to achieve seamless integration with different data assets.
  • It should also have native CMDB integration and regular scanning capability to help system administrators keep an updated catalog of data assets.
  • It should have an extensive detection engine, containing built-in and custom data elements for effective data discovery.
  • It should use artificial intelligence, machine learning, and natural language for contextual analysis to discover data in structured and unstructured systems accurately.
  • It should allow multiple data scanning for faster data discovery.
  • It should support a multitude of formats to effectively discover and tag every byte of data.
  • It should use policy-based, security-based, and privacy-based predefined templates for data labeling.

How Securiti’s AI-Driven Robotic Sensitive Data Discovery Tool Can Help

With data-driven enterprises operating in hyper-scale environments, an AI-driven deep sensitive data discovery solution can give them an edge. Securiti delivers an AI-powered sensitive data discovery solution that can help organizations automate the discovery and classification of data assets and sensitive information across on-premise, native, non-native, and multi-cloud networks.

Take a look at the most prominent features of our Sensitive Data Discovery tool:

  • 200+ native connectors that seamlessly integrate with a multitude of data assets.
  • Built-in and custom data elements for the deep discovery of sensitive data.
  • AI/ML techniques that can effectively detect sensitive data in tables, columns, or document categories.
  • Support Big Data formats, such as AVRO.
  • Support multiple data discovery scans for faster scanning at a granular level.
  • Pre-defined templates for policy-based labeling.
  • Built-in Microsoft Information Protection (MIP) integration for detecting and tagging security-based labels.

Watch a demo to learn how Securiti’s Data Discovery tool can help you detect disparate data and derive meaningful insights.


Frequently Asked Questions (FAQs)

PII (Personally Identifiable Information) data discovery involves identifying and safeguarding personal data that can be used to identify individuals. It is crucial for privacy protection and compliance with data privacy regulations.

PII data can be collected through various means, including online forms, customer databases, employment records, and social media platforms.

PII and personal data are often used interchangeably, but PII typically refers to data that directly identifies an individual (e.g., Social Security numbers), while personal data can include a broader range of information related to an individual's identity.

Examples of PII data include names, addresses, phone numbers, email addresses, Social Security numbers, passport numbers, and driver's license numbers.

Under the General Data Protection Regulation (GDPR), PII data is referred to as "personal data," and it encompasses any information that can identify a natural person, directly or indirectly.

PII data (Personally Identifiable Information) can identify individuals, while non-PII data cannot. Non-PII data is often anonymized or aggregated and does not reveal the identity of individuals.

Join Our Newsletter

Get all the latest information, law updates and more delivered to your inbox


Share


More Stories that May Interest You

Take a
Product Tour

See how easy it is to manage privacy compliance with robotic automation.

Videos

View More

Mitigation OWASP Top 10 for LLM Applications 2025

Generative AI (GenAI) has transformed how enterprises operate, scale, and grow. There’s an AI application for every purpose, from increasing employee productivity to streamlining...

View More

DSPM vs. CSPM – What’s the Difference?

While the cloud has offered the world immense growth opportunities, it has also introduced unprecedented challenges and risks. Solutions like Cloud Security Posture Management...

View More

Top 6 DSPM Use Cases

With the advent of Generative AI (GenAI), data has become more dynamic. New data is generated faster than ever, transmitted to various systems, applications,...

View More

Colorado Privacy Act (CPA)

What is the Colorado Privacy Act? The CPA is a comprehensive privacy law signed on July 7, 2021. It established new standards for personal...

View More

Securiti for Copilot in SaaS

Accelerate Copilot Adoption Securely & Confidently Organizations are eager to adopt Microsoft 365 Copilot for increased productivity and efficiency. However, security concerns like data...

View More

Top 10 Considerations for Safely Using Unstructured Data with GenAI

A staggering 90% of an organization's data is unstructured. This data is rapidly being used to fuel GenAI applications like chatbots and AI search....

View More

Gencore AI: Building Safe, Enterprise-grade AI Systems in Minutes

As enterprises adopt generative AI, data and AI teams face numerous hurdles: securely connecting unstructured and structured data sources, maintaining proper controls and governance,...

View More

Navigating CPRA: Key Insights for Businesses

What is CPRA? The California Privacy Rights Act (CPRA) is California's state legislation aimed at protecting residents' digital privacy. It became effective on January...

View More

Navigating the Shift: Transitioning to PCI DSS v4.0

What is PCI DSS? PCI DSS (Payment Card Industry Data Security Standard) is a set of security standards to ensure safe processing, storage, and...

View More

Securing Data+AI : Playbook for Trust, Risk, and Security Management (TRiSM)

AI's growing security risks have 48% of global CISOs alarmed. Join this keynote to learn about a practical playbook for enabling AI Trust, Risk,...

Spotlight Talks

Spotlight 46:02

Building Safe Enterprise AI: A Practical Roadmap

Watch Now View
Spotlight 13:32

Ensuring Solid Governance Is Like Squeezing Jello

Watch Now View
Spotlight 40:46

Securing Embedded AI: Accelerate SaaS AI Copilot Adoption Safely

Watch Now View
Spotlight 10:05

Unstructured Data: Analytics Goldmine or a Governance Minefield?

Viral Kamdar
Watch Now View
Spotlight 21:30

Companies Cannot Grow If CISOs Don’t Allow Experimentation

Watch Now View
Spotlight 2:48

Unlocking Gen AI For Enterprise With Rehan Jalil

Rehan Jalil
Watch Now View
Spotlight 13:35

The Better Organized We’re from the Beginning, the Easier it is to Use Data

Watch Now View
Spotlight 13:11

Securing GenAI: From SaaS Copilots to Enterprise Applications

Rehan Jalil
Watch Now View
Spotlight 47:02

Navigating Emerging Technologies: AI for Security/Security for AI

Rehan Jalil
Watch Now View
Spotlight 59:55

Building Safe
Enterprise AI

Watch Now View

Latest

Automating EU AI Act Compliance View More

Automating EU AI Act Compliance: A 5-Step Playbook for GRC Teams

Artificial intelligence is revolutionizing industries, driving innovation in healthcare, finance, and beyond. But with great power comes great responsibility—especially when AI decisions impact health,...

Gencore AI Customers Can Now Securely Use DeepSeek R1 View More

Gencore AI Customers Can Now Securely Use DeepSeek R1

Enterprises are under immense pressure to use Generative AI to deliver innovative solutions, extract insights from massive volumes, and stay ahead of the competition....

Navigating Data Regulations in India’s Telecom Sector View More

Navigating Data Regulations in India’s Telecom Sector: Security, Privacy, Governance & AI

Gain insights into the key data regulations in India’s telecom sector and how they impact your business. Learn how Securiti helps ensure swift compliance...

Best Practices for Microsoft 365 Copilot View More

Data Governance Best Practices for Microsoft 365 Copilot

Learn key governance best practices for Microsoft 365 Copilot to ensure security, compliance, and effective implementation for optimal business performance.

5-Step AI Compliance Automation Playbook View More

EU AI Act: 5-Step AI Compliance Automation Playbook

Download the whitepaper to learn about the EU AI Act & its implication on high-risk AI systems, 5-step framework for AI compliance automation and...

A 6-Step Automation Guide View More

Say Goodbye to ROT Data: A 6-Step Automation Guide

Eliminate redundant obsolete and trivial (ROT) data with a strategic 6-step automation guide. Download the whitepaper today to discover how to streamline data management...

Texas Data Privacy and Security Act (TDPSA) View More

Navigating the Texas Data Privacy and Security Act (TDPSA): Key Details

Download the infographic to learn key details about Texas’ Data Privacy and Security Act (TDPSA) and simplify your compliance journey with Securiti.

Oregon’s Consumer Privacy Act (OCPA) View More

Navigating Oregon’s Consumer Privacy Act (OCPA): Key Details

Download the infographic to learn key details about Oregon’s Consumer Privacy Act (OCPA) and simplify your compliance journey with Securiti.

Gencore AI and Amazon Bedrock View More

Building Enterprise-Grade AI with Gencore AI and Amazon Bedrock

Learn how to build secure enterprise AI copilots with Amazon Bedrock models, protect AI interactions with LLM Firewalls, and apply OWASP Top 10 LLM...

DSPM Vendor Due Diligence View More

DSPM Vendor Due Diligence

DSPM’s Buyer Guide ebook is designed to help CISOs and their teams ask the right questions and consider the right capabilities when looking for...

What's
New