Securiti leads GigaOm's DSPM Vendor Evaluation with top ratings across technical capabilities & business value.

View

Safeguarding Enterprise Data : The Significance of Google’s Privacy Policy Update

Author

Jocelyn Houle

Senior Director of Product Management at Securiti

Listen to the content

Privacy and Proprietary Data Protection in the Face of Google's Policy Amendment

In a noteworthy policy revision announced on July 1st, Google has made a significant update to its privacy policy, warranting the attention of business leaders across industries. This update marks a departure from previous practices, as Google expands its use of publicly available data to train all its artificial intelligence (AI) models, extending beyond the previous use limited to Large Language Models (LLMs). The implications of this change have sparked debates regarding privacy and the protection of proprietary data.

The Implications: Balancing Expansive AI Training Data with Privacy Risks

Enterprises now confront a stark reality: their publicly available data, which may encompass a treasure trove of confidential business intelligence, has become an integral part of Google's immense training data corpus. Public data often includes personal identifiers, creating the possibility of revealing private individual details when integrated into AI models. The need for robust data protection measures has never been more critical.

Furthermore, as cutting-edge AI models advance, they possess the ability to de-anonymize individuals, infer their industries and workplaces, and construct intricate profiles based on online activities. This presents a quandary for business leaders—an impetus for innovation coexisting alongside the potential for privacy infringement, intellectual property leakage, brand damage, and inadvertent sharing of anti-competitive information with rivals.

Unveiling the Risks: A Scenario in the Financial Services Industry

To illustrate the magnitude of the challenges ahead, consider the following scenario within the financial services sector:

James, a product manager at the esteemed FinServ Corp, is entrusted with developing a groundbreaking credit card targeting millennials. Seeking insights, he turns to Google, utilizing both his personal and corporate accounts, to research millennial spending habits, existing credit card offers, reward programs, and trends in financial technology. Over time, these searches generate a comprehensive data trail related to the concept of the new credit card.

However, under Google's updated privacy policy:

  1. The publicly available data collected during James's research could potentially be incorporated into Google's AI models.
  2. Leveraging this information, the AI can identify patterns, infer trends, and potentially unveil the conceptual framework behind the new credit card.

The Imperative for Controls: Protecting Strategic Direction and Proprietary Product Development

The risks stemming from this policy shift necessitate immediate action to safeguard FinServ Corp's strategic direction and proprietary product development. While regulatory and technical controls are crucial, their implementation is currently scarce within large companies.

To effectively mitigate these risks, enterprises should invest in state-of-the-art data identification and monitoring tools. These advanced systems proactively identify sensitive data within the corporate data ecosystem, flag it, and ensure continuous surveillance through a unified data command center encompassing all data repositories. This technical approach supplements regulatory measures, providing a dual layer of security to uphold data protection standards.

Balancing Technological Advancement and Privacy Principles

To strike a delicate balance between technological advancements and privacy principles, regulatory bodies play a crucial role in rigorously assessing these policy changes. In an era where AI training relies on vast amounts of data, companies must adopt proactive regulatory measures to safeguard individual privacy and preserve the sanctity of proprietary data.

As the potential for longer-term AI biases and privacy infringements loom, it is imperative for business leaders to remain vigilant. Understanding the potential implications of proprietary data being unexpectedly leveraged, enterprises must embrace a proactive and comprehensive defense strategy. Establishing a framework of data intelligence and automated controls that prevent sensitive information from being fed to an AI model is the key to balancing innovation and safety within an Enterprise.

Join Our Newsletter

Get all the latest information, law updates and more delivered to your inbox


Share


More Stories that May Interest You

Videos

View More

Mitigating OWASP Top 10 for LLM Applications 2025

Generative AI (GenAI) has transformed how enterprises operate, scale, and grow. There’s an AI application for every purpose, from increasing employee productivity to streamlining...

View More

DSPM vs. CSPM – What’s the Difference?

While the cloud has offered the world immense growth opportunities, it has also introduced unprecedented challenges and risks. Solutions like Cloud Security Posture Management...

View More

Top 6 DSPM Use Cases

With the advent of Generative AI (GenAI), data has become more dynamic. New data is generated faster than ever, transmitted to various systems, applications,...

View More

Colorado Privacy Act (CPA)

What is the Colorado Privacy Act? The CPA is a comprehensive privacy law signed on July 7, 2021. It established new standards for personal...

View More

Securiti for Copilot in SaaS

Accelerate Copilot Adoption Securely & Confidently Organizations are eager to adopt Microsoft 365 Copilot for increased productivity and efficiency. However, security concerns like data...

View More

Top 10 Considerations for Safely Using Unstructured Data with GenAI

A staggering 90% of an organization's data is unstructured. This data is rapidly being used to fuel GenAI applications like chatbots and AI search....

View More

Gencore AI: Building Safe, Enterprise-grade AI Systems in Minutes

As enterprises adopt generative AI, data and AI teams face numerous hurdles: securely connecting unstructured and structured data sources, maintaining proper controls and governance,...

View More

Navigating CPRA: Key Insights for Businesses

What is CPRA? The California Privacy Rights Act (CPRA) is California's state legislation aimed at protecting residents' digital privacy. It became effective on January...

View More

Navigating the Shift: Transitioning to PCI DSS v4.0

What is PCI DSS? PCI DSS (Payment Card Industry Data Security Standard) is a set of security standards to ensure safe processing, storage, and...

View More

Securing Data+AI : Playbook for Trust, Risk, and Security Management (TRiSM)

AI's growing security risks have 48% of global CISOs alarmed. Join this keynote to learn about a practical playbook for enabling AI Trust, Risk,...

Spotlight Talks

Spotlight 14:21

AI Governance Is Much More than Technology Risk Mitigation

AI Governance Is Much More than Technology Risk Mitigation
Watch Now View
Spotlight 12:!3

You Can’t Build Pipelines, Warehouses, or AI Platforms Without Business Knowledge

Watch Now View
Spotlight 47:42

Cybersecurity – Where Leaders are Buying, Building, and Partnering

Rehan Jalil
Watch Now View
Spotlight 27:29

Building Safe AI with Databricks and Gencore

Rehan Jalil
Watch Now View
Spotlight 46:02

Building Safe Enterprise AI: A Practical Roadmap

Watch Now View
Spotlight 13:32

Ensuring Solid Governance Is Like Squeezing Jello

Watch Now View
Spotlight 40:46

Securing Embedded AI: Accelerate SaaS AI Copilot Adoption Safely

Watch Now View
Spotlight 10:05

Unstructured Data: Analytics Goldmine or a Governance Minefield?

Viral Kamdar
Watch Now View
Spotlight 21:30

Companies Cannot Grow If CISOs Don’t Allow Experimentation

Watch Now View
Spotlight 2:48

Unlocking Gen AI For Enterprise With Rehan Jalil

Rehan Jalil
Watch Now View

Latest

View More

From Trial to Trusted: Securely Scaling Microsoft Copilot in the Enterprise

AI copilots and agents embedded in SaaS are rapidly reshaping how enterprises work. Business leaders and IT teams see them as a gateway to...

The ROI of Safe Enterprise AI View More

The ROI of Safe Enterprise AI: A Business Leader’s Guide

The fundamental truth of today’s competitive landscape is that businesses harnessing data through AI will outperform those that don’t. Especially with 90% of enterprise...

Data Security Governance View More

Data Security Governance: Key Principles and Best Practices for Protection

Learn about Data Security Governance, its importance in protecting sensitive data, ensuring compliance, and managing risks. Best practices for securing data.

AI TRiSM View More

What is AI TRiSM and Why It’s Essential in the Era of GenAI

The launch of ChatGPT in late 2022 was a watershed moment for AI, introducing the world to the possibilities of GenAI. After OpenAI made...

Managing Privacy Risks in Large Language Models (LLMs) View More

Managing Privacy Risks in Large Language Models (LLMs)

Download the whitepaper to learn how to manage privacy risks in large language models (LLMs). Gain comprehensive insights to avoid violations.

View More

Top 10 Privacy Milestones That Defined 2024

Discover the top 10 privacy milestones that defined 2024. Learn how privacy evolved in 2024, including key legislations enacted, data breaches, and AI milestones.

Comparison of RoPA Field Requirements Across Jurisdictions View More

Comparison of RoPA Field Requirements Across Jurisdictions

Download the infographic to compare Records of Processing Activities (RoPA) field requirements across jurisdictions. Learn its importance, penalties, and how to navigate RoPA.

Navigating Kenya’s Data Protection Act View More

Navigating Kenya’s Data Protection Act: What Organizations Need To Know

Download the infographic to discover key details about navigating Kenya’s Data Protection Act and simplify your compliance journey.

Gencore AI and Amazon Bedrock View More

Building Enterprise-Grade AI with Gencore AI and Amazon Bedrock

Learn how to build secure enterprise AI copilots with Amazon Bedrock models, protect AI interactions with LLM Firewalls, and apply OWASP Top 10 LLM...

DSPM Vendor Due Diligence View More

DSPM Vendor Due Diligence

DSPM’s Buyer Guide ebook is designed to help CISOs and their teams ask the right questions and consider the right capabilities when looking for...

What's
New