Securiti leads GigaOm's DSPM Vendor Evaluation with top ratings across technical capabilities & business value.

View

Autonomous Data Intelligence, Governance, Privacy, & Protection for the Snowflake Data Cloud

Published September 20, 2021 / Updated December 14, 2023
Author

Omer Imran Malik

Data Privacy Legal Manager, Securiti

FIP, CIPT, CIPM, CIPP/US

Listen to the content

This post is also available in: Brazilian Portuguese

As progressive organizations move toward digital transformation, they realize the importance of utilizing data to uncover valuable insights that can improve customer satisfaction, retention, and ultimately, their bottom line. Snowflake has revolutionized data processing and analytics by designing a multi-layered architecture that can process multiple requests concurrently.

The downside of collecting and saving customer data is the escalating risk of the data being misused, accessed by unauthorized individuals, or worse, stolen by cybercriminals. This additional risk creates the need for a robust solution that can ensure data security in the snowflake data cloud using advanced A.I. and automation.

After several conversations with Snowflake customers, industry experts, and analysts, Securiti identified several data protection, privacy, and governance challenges in the Snowflake Data cloud. Let’s explore the major ones we uncovered.

 

Major Data Management Challenges in the Snowflake Data Cloud

We condensed our findings into five major points:

  1. Personal and Sensitive Data Discovery - Accurately and consistently discovering data sets with personal or sensitive information to guide governance and protection efforts.
  2. Sensitive Data Classification & Protection - Enabling Data Engineers to classify and protect sensitive data within data pipelines before sharing it with data analysts.
  3. User Access & Data Usage Management - Managing user access and usage of sensitive data. Admins need to ensure only authorized individuals can access or use personal data for approved purposes only.
  4. Sharing Sensitive Data - Easily sharing data sets internally and externally by masking personal and sensitive data, therefore reducing risks.
  5. Monitoring Security Misconfigurations - Continuously monitoring security configurations to prevent data security breaches.

Why Securit’s Solution for Snowflake?

Securiti partnered with Snowflake to address these challenges with a solution that integrates natively with the Snowflake data cloud and allows admins to manage data privacy, protection, and governance in one solution. Let’s find out how the solution solves each challenge.

Personal and Sensitive Data Discovery in Snowflake

Securiti’s solution for the Snowflake Data Cloud utilizes Data Intelligence to discover Personal and Sensitive personal data in structured or unstructured databases. The solution leverages various AI/ML techniques to combine signals and identify sensitive data with high accuracy. For example, it uses Named entity recognition (NER) to detect multi-part names or locations.

For unstructured databases, the solution can discover sensitive data in a large string data type column. For example, the column might have documents with sensitive personal data in them. If undetected, organizations may inadvertently disclose this sensitive data to unauthorized individuals.

Securiti’s solution can also create sensitive data catalogs, enrich them with metadata, create data risk graphs to visualize risk contributors, and create people data graphs that show every shred of personal information in an intuitive visualization.

Sensitive Data Classification and Protection in Snowflake

After discovering sensitive data, the next challenge is to classify this data and apply controls to protect it from unauthorized access. These controls are essential because there might be instances where data analysts require access to tables that might contain sensitive data.

For example, data analysts need to calculate the number of customers who have saved their credit card information. In this instance, data engineers need to classify the personal data in the table that is sensitive (credit card numbers, expiration dates, CVC codes) and apply protection controls (data masking). After this process is complete, data engineers can give data pipeline access to data analysts.

User Access & Usage Management in Snowflake

Securiti’s solution for Snowflake includes powerful Data Governance features that implement user access and usage controls at a granular level. Admins can enforce user/role-based policies that dictate which users can access or use sensitive data. The unique advantage of Securiti’s solution is that admins can manage these controls in one window. The solution also includes comprehensive dashboards that provide deep insight into user access and usage controls.

Enabling Secure Sensitive Data Sharing For Snowflake

Before organizations can share any data with internal or external stakeholders, they must obfuscate or ‘mask’ all sensitive data to ensure it is not exposed to unauthorized individuals. Securiti’s solution for Snowflake can deploy both dynamic and static data masking policies to secure sensitive data. These policies are based on user roles and the type of data that is being shared.

Static data masking involves setting up a separate shielded database or a ‘dummy database’ that includes value-less data at load time. This way, the organization’s original database remains untouched and secure, and any sensitive data in the shielded database is rendered useless because it is masked. Static data masking is useful when organizations need to share data with external companies for research or purposes.

For example, if a healthcare business wants to share its data with an NGO for medical statistics research, or an e-commerce business needs to share information with market researchers to guide future strategy.

Dynamic data masking is a technique that obscures sensitive data within data streams. Security policies drive dynamic data masking. So, when any data access request is received, the solution checks the requestor’s role against the security policy and dynamically masks any sensitive data before the requestor can access it.

For example, internal employees may be trying to troubleshoot or update a production database. They do not need access to sensitive data (Names, Credit Card Numbers, etc.) to complete this task. Dynamic data masking obscures the information so that these employees work with harmless data as they manipulate a database.

Monitoring Security Misconfigurations in Snowflake

With hundreds of Snowflake users, data administrators find it hard to manage security configurations for each one. For example, there might be policy changes that restrict access to data for specific user roles. Data administrators need to detect and remediate every misconfiguration to ensure data governance policies are enforced effectively. Furthermore, data administrators can enable multi-factor authentication for all users from Securiti’s solution from Snowflake.

The solution also enables policy creation and automatic implementation of those policies. For example, if a user somehow accesses a restricted data table, a notification is sent to administrators automatically. Admins can then remediate the policy and involve relevant stakeholders to investigate the incident.

Fulfilling Privacy Obligations and Ensuring Privacy Law Compliance

In addition to solving the challenges mentioned above, Securiti’s solution for Snowflake offers tools like Data Mapping Automation, DSR Fulfillment automation, Assessment Automation, Breach Lifecycle Management, and Workflow Orchestration. These tools are essential in ensuring compliance with all major privacy laws.

To find out more about how Securiti can help, head over to our Snowflake solution page.

Analyze this article with AI

Prompts open in third-party AI tools.
Join Our Newsletter

Get all the latest information, law updates and more delivered to your inbox


Share

More Stories that May Interest You
Videos
View More
Mitigating OWASP Top 10 for LLM Applications 2025
Generative AI (GenAI) has transformed how enterprises operate, scale, and grow. There’s an AI application for every purpose, from increasing employee productivity to streamlining...
View More
Top 6 DSPM Use Cases
With the advent of Generative AI (GenAI), data has become more dynamic. New data is generated faster than ever, transmitted to various systems, applications,...
View More
Colorado Privacy Act (CPA)
What is the Colorado Privacy Act? The CPA is a comprehensive privacy law signed on July 7, 2021. It established new standards for personal...
View More
Securiti for Copilot in SaaS
Accelerate Copilot Adoption Securely & Confidently Organizations are eager to adopt Microsoft 365 Copilot for increased productivity and efficiency. However, security concerns like data...
View More
Top 10 Considerations for Safely Using Unstructured Data with GenAI
A staggering 90% of an organization's data is unstructured. This data is rapidly being used to fuel GenAI applications like chatbots and AI search....
View More
Gencore AI: Building Safe, Enterprise-grade AI Systems in Minutes
As enterprises adopt generative AI, data and AI teams face numerous hurdles: securely connecting unstructured and structured data sources, maintaining proper controls and governance,...
View More
Navigating CPRA: Key Insights for Businesses
What is CPRA? The California Privacy Rights Act (CPRA) is California's state legislation aimed at protecting residents' digital privacy. It became effective on January...
View More
Navigating the Shift: Transitioning to PCI DSS v4.0
What is PCI DSS? PCI DSS (Payment Card Industry Data Security Standard) is a set of security standards to ensure safe processing, storage, and...
View More
Securing Data+AI : Playbook for Trust, Risk, and Security Management (TRiSM)
AI's growing security risks have 48% of global CISOs alarmed. Join this keynote to learn about a practical playbook for enabling AI Trust, Risk,...
AWS Startup Showcase Cybersecurity Governance With Generative AI View More
AWS Startup Showcase Cybersecurity Governance With Generative AI
Balancing Innovation and Governance with Generative AI Generative AI has the potential to disrupt all aspects of business, with powerful new capabilities. However, with...

Spotlight Talks

Spotlight 50:52
From Data to Deployment: Safeguarding Enterprise AI with Security and Governance
Watch Now View
Spotlight 11:29
Not Hype — Dye & Durham’s Analytics Head Shows What AI at Work Really Looks Like
Not Hype — Dye & Durham’s Analytics Head Shows What AI at Work Really Looks Like
Watch Now View
Spotlight 11:18
Rewiring Real Estate Finance — How Walker & Dunlop Is Giving Its $135B Portfolio a Data-First Refresh
Watch Now View
Spotlight 13:38
Accelerating Miracles — How Sanofi is Embedding AI to Significantly Reduce Drug Development Timelines
Sanofi Thumbnail
Watch Now View
Spotlight 10:35
There’s Been a Material Shift in the Data Center of Gravity
Watch Now View
Spotlight 14:21
AI Governance Is Much More than Technology Risk Mitigation
AI Governance Is Much More than Technology Risk Mitigation
Watch Now View
Spotlight 12:!3
You Can’t Build Pipelines, Warehouses, or AI Platforms Without Business Knowledge
Watch Now View
Spotlight 47:42
Cybersecurity – Where Leaders are Buying, Building, and Partnering
Rehan Jalil
Watch Now View
Spotlight 27:29
Building Safe AI with Databricks and Gencore
Rehan Jalil
Watch Now View
Spotlight 46:02
Building Safe Enterprise AI: A Practical Roadmap
Watch Now View
Latest
View More
DataAI Security for Financial Services: Turn Risk Into competitive Advantage
Financial services run on sensitive data. AI is now in fraud detection, underwriting, risk modelling, and customer service, raising both upside and risk. Institutions...
View More
Securiti and Databricks: Putting Sensitive Data Intelligence at the Heart of Modern Cybersecurity
Securiti is thrilled to partner with Databricks to extend Databricks Data Intelligence for Cybersecurity. This collaboration marks a pivotal moment for enterprise security, bringing...
View More
Navigating China’s AI Regulatory Landscape in 2025: What Businesses Need to Know
A 2025 guide to China’s AI rules - generative-AI measures, algorithm & deep-synthesis filings, PIPL data exports, CAC security reviews with a practical compliance...
View More
All You Need to Know About Ontario’s Personal Health Information Protection Act 2004
Here’s what you need to know about Ontario’s Personal Health Information Protection Act of 2004 to ensure effective compliance with it.
Maryland Online Data Privacy Act (MODPA) View More
Maryland Online Data Privacy Act (MODPA): Compliance Requirements Beginning October 1, 2025
Access the whitepaper to discover the compliance requirements under the Maryland Online Data Privacy Act (MODPA). Learn how Securiti helps ensure swift compliance.
Retail Data & AI: A DSPM Playbook for Secure Innovation View More
Retail Data & AI: A DSPM Playbook for Secure Innovation
The resource guide discusses the data security challenges in the Retail sector, the real-world risk scenarios retail businesses face and how DSPM can play...
DSPM vs Legacy Security Tools: Filling the Data Security Gap View More
DSPM vs Legacy Security Tools: Filling the Data Security Gap
The infographic discusses why and where legacy security tools fall short, and how a DSPM tool can make organizations’ investments smarter and more secure.
Operationalizing DSPM: 12 Must-Dos for Data & AI Security View More
Operationalizing DSPM: 12 Must-Dos for Data & AI Security
A practical checklist to operationalize DSPM—12 must-dos covering discovery, classification, lineage, least-privilege, DLP, encryption/keys, policy-as-code, monitoring, and automated remediation.
The DSPM Architect’s Handbook View More
The DSPM Architect’s Handbook: Building an Enterprise-Ready Data+AI Security Program
Get certified in DSPM. Learn to architect a DSPM solution, operationalize data and AI security, apply enterprise best practices, and enable secure AI adoption...
Gencore AI and Amazon Bedrock View More
Building Enterprise-Grade AI with Gencore AI and Amazon Bedrock
Learn how to build secure enterprise AI copilots with Amazon Bedrock models, protect AI interactions with LLM Firewalls, and apply OWASP Top 10 LLM...
What's
New